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opportunity for testing the usefulness of various iso­
thermal P-V equations. 

To be useful in the representation of P-V data for a 
given phase, an equation must be single valued and 
continuous for all pressures, V must be greater than 
zero but decrease for all P, and elV/dP must decrease 
continuously. These conditions suppose no phase 
changes under pressure; if phase changes occur, the 
extrapolation method is no longer useful. Of equations 
sa tisfying the above conditions, the most satisfactory 
will be that which can best fit existing data with the 
smallest number of fitting coefficients. A further de­
sirable property is that the coefficients be directly re­
lated to some physical property of the material con­
sidered . 

A direct approach to developing a P-V equa.tion 
would be to express the Helmholtz free energy as a 
power series in V and use the relation P= - (aF/aV)r . 
An equiv:1.lent, and easier, method is to usc ,t Taylor 
series exp:1.nsion of the pressure in terms of the volume. 
The expression for F then follows from integration of 
P with respect to V. 

Considering the conditions listed above for a pres­
sure-volume equation, a likely choice is to expand the 
pressure in powers of Yo/V, about Vo/V= 1 or V= Yo. 
This expression, up to the quadratic term, is 

p_ dP ( Vo _ 1) 
- d(Vo/Vh~v. V 

1 d
2
P ( Vo )2 +- --1 + ... 

2 d(Vo/V)2v_v. V ' 
(14) 

where Vo is initial volume. The coefficients of the ex­
pansion can be written as 

riP 

d(lIo/Vh_v. 
Bo 

and 

where Bo is the bulk modulus at 1 atm and Bo' is the 
derivative of the bulk modulus with respect to prcssure, 
evaluated at 1 atm. Equation (14) can be expressed, 
therefore, as 

P=Bo(~ 11/11) +~Bo(Bo'-1) (~V/1I)2+ ... , (15) 

where ~ V = (Vo- V) . This equation meets the require­
ments listed above since it is single valued and con­
tinuous, and it predicts a volume which ste;tdily de­
creases a.t a deCl"easing rate with increasing pressure 
but always remains real and positive, provided that 
Bo' is greater than 1. 

A related but alternate approach has been suggested 
by Onat38 and by Vaisnys'!9 whereby the pressure is 
expanded in powers of InV about 11= Yo : 

P= (dP/d InVh_v.(lnV-Inll.) 

+Hd2P/d ln1l2)v~v.(lnV-InVo)2+ .. ". (16) 

Again, the coefficients may be expressed in terms of 
Bo and Bo', viz., 

(dP/d InVh_v.= - Bo 
and 

(d2P/d In 112) v-v.= BoB.', 

so that Eq . (16) may be written as 

P= - Bo In(V/Vo) +~BoBo'[ln( V /V.) J2+ .. '. (17) 

This equation also meets the requirements listed above. 
A number of other equations to describe the pressure­

volume relations of materials have been proposed by 
various investigators. Bridgman expressed a great deal 

:l8 E . T . Onat (private communication). 
3i R. J. Vaisnys (private communication)" 


